15,324 research outputs found

    Mesoscopic structure and social aspects of human mobility

    Get PDF
    The individual movements of large numbers of people are important in many contexts, from urban planning to disease spreading. Datasets that capture human mobility are now available and many interesting features have been discovered, including the ultra-slow spatial growth of individual mobility. However, the detailed substructures and spatiotemporal flows of mobility - the sets and sequences of visited locations - have not been well studied. We show that individual mobility is dominated by small groups of frequently visited, dynamically close locations, forming primary "habitats" capturing typical daily activity, along with subsidiary habitats representing additional travel. These habitats do not correspond to typical contexts such as home or work. The temporal evolution of mobility within habitats, which constitutes most motion, is universal across habitats and exhibits scaling patterns both distinct from all previous observations and unpredicted by current models. The delay to enter subsidiary habitats is a primary factor in the spatiotemporal growth of human travel. Interestingly, habitats correlate with non-mobility dynamics such as communication activity, implying that habitats may influence processes such as information spreading and revealing new connections between human mobility and social networks.Comment: 7 pages, 5 figures (main text); 11 pages, 9 figures, 1 table (supporting information

    High capacity cathode materials for Li-S batteries

    Full text link
    To enhance the stability of sulfur cathode for a high energy lithium-sulfur battery, sulfur-activated carbon (S-AC) composite was prepared by encapsulating sulfur into micropores of activated carbon using a solution-based processing technique. In the analysis using the prepared specimen of S-AC composite by the focused ion beam (FIB) technique, the elemental sulfur exists in a highly dispersed state inside the micropores of activated carbon, which has a large surface area and a narrow pore distribution. The S-AC composite was characterized through X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) method, selected area electron diffraction (SAED), energy dispersive X-ray spectrometry (EDX), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), and field emission scanning electron microscopy (FESEM). A lithium-sulfur cell using the S-AC composite has a high first discharge capacity over 800 mA h g -1 S even at a high current density such as 2C (3200 mA g -1 S) and has good cycleability around 500 mA h g-1 S discharge capacity at the 50th cycle at the same current density. © 2013 The Royal Society of Chemistry

    Spatiotemporal correlations of handset-based service usages

    Get PDF
    We study spatiotemporal correlations and temporal diversities of handset-based service usages by analyzing a dataset that includes detailed information about locations and service usages of 124 users over 16 months. By constructing the spatiotemporal trajectories of the users we detect several meaningful places or contexts for each one of them and show how the context affects the service usage patterns. We find that temporal patterns of service usages are bound to the typical weekly cycles of humans, yet they show maximal activities at different times. We first discuss their temporal correlations and then investigate the time-ordering behavior of communication services like calls being followed by the non-communication services like applications. We also find that the behavioral overlap network based on the clustering of temporal patterns is comparable to the communication network of users. Our approach provides a useful framework for handset-based data analysis and helps us to understand the complexities of information and communications technology enabled human behavior.Comment: 11 pages, 15 figure

    Anchorage effectiveness of orthodontic miniscrews compared to headgear and transpalatal arches:a systematic review and meta-analysis

    Get PDF
    Background: Anchorage in orthodontics can be provided through several extra- and intra-oral sources including headgear, teeth, cortical bone and soft tissue. Objective: The aim of this review was to systematically review the effectiveness of miniscrews in reinforcing anchorage during en-masse retraction of anterior teeth in comparison to conventional anchorage appliances. Search method: Comprehensive searching of the electronic databases was undertaken up to March 2018 in the Cochrane Database of Systematic review, Cochrane Central Register of Controlled Trials, MEDLINE via PubMed and Scopus databases. Additional searching for on-going and unpublished data and hand search of relevant journals were also undertaken, authors were contacted, and reference lists screened. Eligibility criteria: Searches were restricted to randomized clinical trials (RCTs) published in English, which compared anchorage reinforcement using mechanically-retained miniscrews (diameter of 2 mm or less) to conventional anchorage appliances during en-masse retraction of anterior teeth in participants of any age treated with fixed appliances combined with extraction of maxillary premolars. Data collection and analysis: Blind and induplicate study selection, data extraction and risk of bias assessment were undertaken. The primary outcome was the amount of mesial movement of the upper first permanent molar (anchorage loss) while secondary outcomes included treatment duration, number of visits, adverse effects and patient-centered outcomes. The risk of bias was assessed using Cochrane risk of bias tool. A random-effects model with its corresponding 95% confidence interval (CI) were generated for comparable outcomes. Statistical heterogeneity across the studies were assessed using the I2 and Chi2 test. Additional sensitivity tests were implemented. Results: Seven RCTs met the inclusion criteria, however, data of 241 participants from 6 RCTs (250 miniscrews and 134 conventional anchorage appliances) were meta-analyzed. Qualities of the included RCTs varied from low to high. The standardized mean difference (SMD) of the anchrage loss between the two intervention groups was 2.07 mm ((95% CI (–3.05) to (–1.08), p I2 = 88%, 6 RCTs)) in favour of miniscrews, which was also preserved after excluding the high risk of bias studies (SMD 1.94 mm, 95% CI (–2.46) to (–0.42) p I2 = 93%, 3 RCTs)). Information on overall treatment duration, space closure duration, quality of treatment, patient-reported outcomes, adverse effects and number of visit were limited. Conclusion: The result of the meta-analysis suggested that there is moderate quality of evidence that miniscrews are clinically and statistically more effective in preserving orthodontic anchorage than conventional appliances. However, this conclusion is supported by a small number of studies with variable qualities. High-quality RCTs would give a better understanding of miniscrews effectiveness in providing orthodontic anchorage.</p

    Anomalous structure in the single particle spectrum of the fractional quantum Hall effect

    Get PDF
    The two-dimensional electron system (2DES) is a unique laboratory for the physics of interacting particles. Application of a large magnetic field produces massively degenerate quantum levels known as Landau levels. Within a Landau level the kinetic energy of the electrons is suppressed, and electron-electron interactions set the only energy scale. Coulomb interactions break the degeneracy of the Landau levels and can cause the electrons to order into complex ground states. In the high energy single particle spectrum of this system, we observe salient and unexpected structure that extends across a wide range of Landau level filling fractions. The structure appears only when the 2DES is cooled to very low temperature, indicating that it arises from delicate ground state correlations. We characterize this structure by its evolution with changing electron density and applied magnetic field. We present two possible models for understanding these observations. Some of the energies of the features agree qualitatively with what might be expected for composite Fermions, which have proven effective for interpreting other experiments in this regime. At the same time, a simple model with electrons localized on ordered lattice sites also generates structure similar to those observed in the experiment. Neither of these models alone is sufficient to explain the observations across the entire range of densities measured. The discovery of this unexpected prominent structure in the single particle spectrum of an otherwise thoroughly studied system suggests that there exist core features of the 2DES that have yet to be understood.Comment: 15 pages, 10 figure

    N=8 Superspace Constraints for Three-dimensional Gauge Theories

    Get PDF
    We present a systematic analysis of the N=8 superspace constraints in three space-time dimensions. The general coupling between vector and scalar supermultiplets is encoded in an SO(8) tensor W_{AB} which is a function of the matter fields and subject to a set of algebraic and super-differential relations. We show how the conformal BLG model as well as three-dimensional super Yang-Mills theory provide solutions to these constraints and can both be formulated in this universal framework.Comment: 34 + 10 pages; added references, minor correction

    Cellular Contraction and Polarization Drive Collective Cellular Motion

    Get PDF
    Coordinated motions of close-packed multicellular systems typically generate cooperative packs, swirls, and clusters. These cooperative motions are driven by active cellular forces, but the physical nature of these forces and how they generate collective cellular motion remain poorly understood. Here, we study forces and motions in a confined epithelial monolayer and make two experimental observations: 1) the direction of local cellular motion deviates systematically from the direction of the local traction exerted by each cell upon its substrate; and 2) oscillating waves of cellular motion arise spontaneously. Based on these observations, we propose a theory that connects forces and motions using two internal state variables, one of which generates an effective cellular polarization, and the other, through contractile forces, an effective cellular inertia. In agreement with theoretical predictions, drugs that inhibit contractility reduce both the cellular effective elastic modulus and the frequency of oscillations. Together, theory and experiment provide evidence suggesting that collective cellular motion is driven by at least two internal variables that serve to sustain waves and to polarize local cellular traction in a direction that deviates systematically from local cellular velocity

    Ab initio study of magnetism at the TiO2/LaAlO3 interface

    Get PDF
    In this paper we study the possible relation between the electronic and magnetic structure of the TiO2/LaAlO3 interface and the unexpected magnetism found in undoped TiO2 films grown on LaAlO3_3. We concentrate on the role played by structural relaxation and interfacial oxygen vacancies. LaAlO3 has a layered structure along the (001) direction with alternating LaO and AlO2 planes, with nominal charges of +1 and -1, respectively. As a consequence of that, an oxygen deficient TiO2 film with anatase structure will grow preferently on the AlO2 surface layer. We have therefore performed ab-initio calculations for superlattices with TiO2/AlO2 interfaces with interfacial oxygen vacancies. Our main results are that vacancies lead to a change in the valence state of neighbour Ti atoms but not necessarily to a magnetic solution and that the appearance of magnetism depends also on structural details, such as second neighbor positions. These results are obtained using both the LSDA and LSDA+U approximations.Comment: Accepted for publication in Journal of Materials Scienc
    • …
    corecore